
Project Proposal Report - Team 6

Abby Davidow, Grant Schnettgoecke, Archana Ramakrishnan, Adam Soelter, Alfonso Martello

Project Name: What’s Due When (WDW)

Project Synopsis:

What’s Due When web application lets students see upcoming schoolwork for all their classes in

one place and allows professors to add/edit their class schedules.

Project Description:

College students are constantly barraged by emails, announcements, and handouts from a wide

variety of different sources. Keeping track of this deluge can be overwhelming, especially for

freshmen just entering the college world. This information overload can add unnecessary stress

to students’ lives and managing it can take substantial time and resources. What’s Due When

(WDW) aims to solve this problem by providing a central application that faculty and students

can use to control the flow of information. Faculty can use WDW to add events (such as notes,

due dates, or comments) directly to their students’ calendars on either a weekly, monthly, or

semester basis. Furthermore, faculty can opt-in to receive reminder emails to input information.

Students can use WDW to edit or add events to their own calendar with the extra benefit of

having all announcements relevant to them gathered in one convenient place. The result will be

an online platform (specifically, a website designed using React.js) where students and faculty

can have schedules delivered in a manageable and convenient way.

Project Milestones:

Fall Semester

10/5/20 - Define project requirements/Initial project description

10/23/20 - Complete use case diagrams and research

11/6/20 - Initial front-end skeleton

11/20/20 - Initial back-end and database work

Spring Semester

2/12/21 - Finish UI implementation

2/26/21 - Finish back-end implementation

3/9/21 - Ensure connection between front and back end

3/16/21 - Testing

3/23/21 - Documentation

Project Budget:

The costs incurred will be for the domain name, web hosting service, and the database. A one-

year registration from Namecheap for Education costs $8.88 for whatsduewhen.com and $24.88

for whatsduewhen.io. Until the KU web server hosts our website, we could use GitHub to host

the application for free. If we do not integrate with KU, we can use Hostinger, which has a

Business Shared Hosting plan for small businesses. It would cost us $3.99 monthly with $7.95

monthly when you renew the plan. On an enterprise level, MongoDB would have a monthly cost

of $57, providing 10 GB to 4 TB of storage and 2 GB to 768 GB of RAM. It also has a developer

version which is free of cost and scales up to 5 GB in storage. Special training in React JS and

databases will be required by the end of October/early November to start implementing the

project.

Preliminary Project Design:

How the Software Works

 Faculty View Student View

Our website will have five main UI views for users. The first view for any user will be the login

page. Faculty and student users will have separate homepages, however, the view for both

users will display a calendar containing events for all their classes as shown in the mock

designs above. On this page, they will be able to adjust their view and choose other editing

options. Users can access another view to edit the email reminders they receive for each event.

The difference between faculty and student views is the additional option to create a new class

and add events. Clicking on these options will bring up a form view where all required input will

be entered in order to create a new course or event.

For the front end of our website, we will be using React JS library to build our UI. We decided

on React due to its fast learning curve and re-usability in terms of components. A couple of our

team members have some experience with React and found it to be straightforward to learn and

has helpful developer tools. The reusability will be key for our design since the student and

faculty views will require many similar components.

Another key component of our, and any, web project is the backend. The backend is the portion

of the code that runs on a server, performs computations, and responds to user input remotely.

The user input is generated by the user by interacting with our ReactJS front-end before being

transmitted through an HTTP protocol to our back end. After the back end performs the

necessary computations requested by the user, it generates a response which it transmits back

through an HTTP protocol. This process continues until the user stops interacting with the

application. This process is summed up in the figure shown below.

This server client architecture allows us to move computations away from possibly resource

limited user devices such as cell phones and tablets and towards the more performant

machines that run the server. Additionally, it allows us to share common data in one process

(the back end) rather than duplicating the same data across multiple processes/devices on the

front end. For example, many students are enrolled in the same class. So, it would be wasteful

to store information about that class on every user device. Instead, we can store one copy of

that information on the server and let every user access that information over the internet when

that information is needed by the user.

For the back end of our project, we intend to utilize NodeJS. NodeJS is a cross platform

backend for web applications that allows the user to run JavaScript code outside of the browser.

One of the main benefits we receive from using NodeJS, in conjunction with our ReactJS

frontend, is that we can write the front end and back ends in the same language. Additionally,

NodeJS is designed to be more performant than traditional back-end models because it makes

use of a single threaded event loop rather than a traditional request/response model. This

allows it to avoid the context switching overhead that is common in other back-end API’s.

For our database, we were split between using MongoDB and MySQL. Both database systems

have free versions we could use for our project. MongoDB stores its data inside of JSON files

so changing the structure of the data is simple and quick, which would allow us to easily change

how our project functions in the future. MySQL on the other hand stores its data inside of tables

and requires new tables to be made or deleted whenever a change is made making it a more

expensive process to change the project if data needs to be stored in a different way. However,

there are three compelling reasons for why we chose to use MySQL. In accordance with the

ACM Code of Ethics and Professional Conduct rule 2.6 “Perform work only in areas of

competence”, since more team members know how to use MySQL than MongoDB, we have

chosen to use MySQL. Furthermore, our data has a simple structure with clear relations making

it an ideal candidate for using MySQL as it is a relational database. Finally, KU has MySQL

servers that we can use, even if only for one semester, to store our data so that way student

data can be protected by KU and our application can meet FERPA standards during

development. Observe the ER Diagram (Entity Relationship Diagram) for our MySQL database

below:

The above diagram shows our 4 data tables (Professors, Classes, Students, and Assignments)

and how they relate to each other (the diamond connections). Additionally, it shows what types

of data each table will hold (for example, the Student table will contain a student’s id, email,

password, and name). This diagram is a rough sketch for now. Ideally, we will not actually need

to store student and professor emails or password as we will be using a single-sign in API

(possibly the KU single-sign on or Google sign in) to handle user authentication. Every table

must have a primary key for data entry identification purposes. These primary keys are denoted

by an underlined attribute. Furthermore, the Assignments table has an identifying relationship

with the Classes table as an assignment cannot exist without it being associated with a class.

Finally, the use of arrows denotes a one-to-many relationship (with the arrow representing the

one and the lack of an arrow representing many). For example, one professor can teach many

classes, but a class is usually not taught by many professors.

Design Constraints

Technical Constraints

Programming language: We are considering using the MERN stack. It stands for MongoDB,

Express, ReactJS and NodeJS. Express is a framework that works with Node.js’s web server to

organize the functionality of the application. It simplifies routing, renders dynamic HTTP objects,

and adds utilities to the HTTP objects. ReactJS is a library to build interfaces using reusable

components. NodeJS is a backend environment that facilitates returning content from the server

to the client.

Upon looking at the differences between a traditional RDBMS and MonogoDB, which uses

noSQL, we made some observations. While RDBS will help lay out schema design that links

related tables, noSQL databases are built to have flexible schemas and specific data models.

MongoDB will be fast and highly scalable. Depending on if our application will be put to mass

usage in the future, we will choose our database accordingly.

Use of specific libraries: Node Package Manager (NPM) has a react-calendar package that we

could implement for the user interface. This package provides a small calendar view to pick

days, months, years, or even decades. It is fast, lightweight and easy to style. Additionally, the

react-big-calendar is an events calendar component, which uses flexbox. This will be helpful to

build in events into each date in addition to the mini calendar view that the first package

provides. NPM also provides a react-google-calendar-api to manage a google calendar and

node-outlook to integrate the Outlook calendar. We may opt into using one of these if we are

able to introduce some level of customization to fit our use case. It might help to stay consistent

if we use google/outlook authentication.

Operating system or platforms supported: We aim to build the web application to be accessible

through a desktop or mobile browser. The proper rendering of a lot of the front-end components

in React will determine the platforms supported. The react-calendar package supports only

modern browsers-Internet Explorer 11, Edge 12-85 and 86, and modern versions of Chrome,

Safari and Opera on desktop. On mobile, it supports iOS Safari 10-13.7 and 14, Android

Browser 81, Opera Mobile 59, Chrome 85 and Firefox 79 on Android. The react-big-calendar

package also works on modern browsers but does not have specific constraints of supported

browsers.

Business Constraints

Schedule: The project will be ready to potentially integrate into the KU system by the end of

April 2021. The timeline leading up to that goal involves planning, communicating with the

stakeholders in addition to iterative prototyping, implementing and getting user feedback. We

picked the project idea in late September 2020. In early October, we outlined the requirements

by meeting with the professor who introduced this idea. Following that was researching the

technologies we would use and planning the design through use case, database schema, and

wireframe diagrams. The bulk of the implementation will start in late November and a minimum

viable product will be built by December. We will iterate on that product after some feedback to

integrate the student and professor use case by March. March and April will be our last spring of

enhancements, bug fixes and database integration.

Team composition and make-up: We have a team with diverse skill sets and interests. Grant

and Alfonso will work as an intermediary between the front end and back end sides of the

application. Adam will focus on perfecting the back-end functionality, while Alfonoso will support

the database management and configurations. Abby and Archana will primarily work to design

and enhance the user interface and experience on the front end. These roles will complement

each other and shift as our priorities shift through the project timeline.

Ethical Issues:

A major ethical issue that we will have to account for as we implement our project is ensuring

students’ rights as laid out in the Family Educational Rights and Privacy Act (FERPA) are

protected. Students have the right to choose what is disclosed about their education records.

This includes grades, the classes they take, or any other identifiable information from their

education record. If we are going to store information about the classes a student is taking in

our database, we need to take appropriate measures to protect their information from possible

hacks into our database. One way we could increase the security of our database is by double

hashing the information we store, so if there is a breach, the data that would be vulnerable is

protected by a second hash. Another approach would be to store our data on KU’s MySQL

servers during development so user data is already protected by safeguards KU has in place.

Another minor ethical issue that we need to abide by is ACM Code of Ethics and Professional

Conduct rule 1.3 “Be honest and trustworthy.” The concern for this rule is that our project is

being made to make time management easier for students. However, in achieving this goal we

also need to convince faculty to use our project. Thus, we have the two-pronged job of

designing our software with students and teachers in mind. We will need to be upfront about the

purpose behind our project and its capabilities throughout the development process. We are

toying around with many ideas to make our software more faculty friendly, but we should not

advertise these ideas as features until we know they will be implemented.

Intellectual Property Issues:

An intellectual property issue that could arise is if we plan to integrate our project with KU. We

plan to integrate single sign on through Blackboard for students and professors. KU would also

be hosting our application and storing information regarding students’ class schedules. Because

of this, KU might not allow us the right to some of the code. There are a couple of routes that

we could go. We could decide that we want to have the rights to everything that we create and

have it as a stand-alone application. KU would then decide if they want to buy our software or

not. We would then want to make sure we copyright the code that contains the core functionality

of our application. Another route we could take is to work with KU. We would sign a contract

stating what our property is and what property they will have. The code that will be directly

related to helping KU professors and students will be theirs. We will still have rights to the code

that is responsible for the main functionality of the web app. Lastly, we may decide that we

want to make our project open-source and let anyone use our application. This would allow

anyone to use our code and modify it however they like. Since anyone will be able to use our

application, we would not have to worry about any intellectual property issues.

Change Log:

• We have reworked the budget for our application to include specific vendors and pricing.

